A sharp stability estimate in tensor tomography

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Stability Estimate in Tensor Tomography

where γ runs over the set of all geodesics with endpoints on ∂M . All potential fields dv given by (dv)ij = 1 2 (∇ivj +∇jvi) with v = 0 on ∂M belong to the kernel of I. The ray transform I is called s-injective if this is the only obstruction to injectivity, i.e., if If = 0 implies that f is potential. S-injectivity can only hold under certain assumptions on (M, g). A natural conjecture is that...

متن کامل

Depth dependent stability estimate in electrical impedance tomography

We study the inverse problem of determining an electrical inclusion from boundary measurements. We derive a stability estimate for the linearized map with explicit formulae on generic constants that shows that the problem becomes more ill-posed as the inclusion is farther from the boundary. We also show that this estimate is optimal.

متن کامل

A Sharp Bilinear Restriction Estimate for Paraboloids

X iv :m at h/ 02 10 08 4v 2 [ m at h. C A ] 1 3 D ec 2 00 2 Abstract. Recently Wolff [28] obtained a sharp L2 bilinear restriction theorem for bounded subsets of the cone in general dimension. Here we adapt the argument of Wolff to also handle subsets of “elliptic surfaces” such as paraboloids. Except for an endpoint, this answers a conjecture of Machedon and Klainerman, and also improves upon ...

متن کامل

A sharp bilinear cone restriction estimate

The purpose of this paper is to prove an essentially sharp L2 Fourier restriction estimate for light cones, of the type which is called bilinear in the recent literature. Fix d ≥ 3, denote variables in Rd by (x, xd) with x ∈ Rd−1, and let Γ = {x : xd = |x| and 1 ≤ xd ≤ 2}. Let Γ1 and Γ2 be disjoint conical subsets, i.e. Γi = {x ∈ Γ : x xd ∈ Ωi} where Ωi are disjoint closed subsets of the sphere...

متن کامل

A sharp Hölder estimate for elliptic equations in two variables

We prove a sharp Hölder estimate for solutions of linear two-dimensional, divergence form elliptic equations with measurable coefficients, such that the matrix of the coefficients is symmetric and has unit determinant. Our result extends some previous work by Piccinini and Spagnolo [7]. The proof relies on a sharp Wirtinger type inequality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2008

ISSN: 1742-6596

DOI: 10.1088/1742-6596/124/1/012007